Low Frequency Observations of Supernova Remnants and HII regions

Namir E. Kassim
Naval Research Laboratory
Washington, DC, USA

Why study SNRs at Low Frequencies?

- They are nonthermal and hence brighter.
 Therefore:
 - It is convenient to study known ones
 - It is easiest to find new ones (in the radio at least)
 - Thermal absorption effects can be measured
 - Spectral studies are enhanced because of the increased lever arm in frequency space
- They are big: the FoV and angular resolution are generally well matched to SNR sizes

Finding New SNRs

- Low frequencies ideal for finding new SNRs
- Why is this important?
 - SNR catalogs incomplete
 - Catalogs severely limited by selection effects
 - Missing low surface brightness extended SNRs
 - Catalogs currently complete to Σ >8x10⁻²¹Wm⁻²Hzsr⁻¹
 - See Green 1991, PASP, **103**, 209
 - Also missing bright, compact "young" SNRs
 - Complete samples required for
 - SN/SNR birthrates
 - Energetics: Energy input by SN to ISM
 - Distribution: Comparison with distribution of progenitor population
 - PSR/SNR associations

Finding New SNRs

Studying Known SNRs

- Important for distinguishing shells-composites-plerions
 - Eg. Dwarakanath's 34 MHz Vela work (1991, J.Astrop.Astr., 12, 1299)
 - Vela X: $\alpha \sim -0.16 \Rightarrow$ Plerion, Vela YZ: $\alpha \sim -0.53 \Rightarrow$ Shell
- Relative super-position of HII/SNRs in complex regions
- Useful for finding shells around known plerions?
 - E.g. the Crab
- Integrated & spatially resolved continuum spectra important for all theories of SNR emission

Radio Spectra of SNRs: Probes of Particle Acceleration Physics

- Radio spectral index measures the energy spectrum of the relativistic electrons accelerated in SNR shocks
 - Important to all theories of SNR emission (van der Lann & Fermi)
 - Reported variations have long been controversial
 - LF Imaging weak link in past studies
- Spatially resolved spectral index mapping
 - Possible source of variations:
 - Variations in parameters of ongoing particle acceleration
 - $\alpha=3[2(r-1)]^{-1}$: Weaker shocks, lower compression ratios, steeper α
 - Curved Electron spectra (CRs or PA with diffusion)
 - Regions of enhanced B field will shift break frequency up convex
 - Cosmic-ray mediated shocks: Concave spectra
 - Mixed thermal population: Regions of flatter spectra
 - Very complicated, theory can predict anything!
 5-13-03

SNR Spectra: Probes of CR Acceleration Physics

- Even accurate integrated spectra are important
 - Integrated spectra important test of DSA theory in young SNRs
 - Fermi theory predicts concave spectra constrains magnetic field strength (Reynolds & Ellison 1992, ApJ, 399, L75)
 - LF measurements key to determining integrated spectrum
 - LF flux densities are weak link in presently known spectra
 - Important for van der Laan emission in older SNRs
 - Spectral breaks in older SNRs linked to compression of CR gas with break at 200 MHz: -0.4 below, -0.9 above (Bridle 1967, MNRAS, 136, 219)
 - Cygnus Loop (Green 1990, AJ, 100, 1927; Sastry et al. 1981, J. Astrophys. Astr., 2, 239)
- LF systems like SIRA with modest resolution but powerful spectral dynamic range - can provide unique measurements

SNR Integrated Spectra

- Fermi acceleration predicts curved integrated spectra
- Large spectral dynamic range required to test this theory.
- Large spectral dynamic range can also determine magnetic field strengths.
- Ideal for SIRA

Reynolds & Ellison (1992)

Absorption: Internal - Measure of thermal material inside SNRs

- Cas-A internal absorption at 74 MHz
 - Second case for unshocked ejecta inside young SNR (Kassim et al. 1995, ApJ, 455, L59)
 - 1st case: SN1006: Hamilton & Fesen 1988, ApJ, **327**, 178
 - Important constraint for SNe/SNR theory
- Crab internal absorption at 74 MHz
 - Constrains location of filaments relative to nonthermal emitting material (Bietenholz et al. 1997, ApJ, 490, 291)
 - Wets appetite for lower frequency measurements
- Internal absorption common? Even at this relatively "high" frequency?

Resolved Spatial Spectral Index Variations

Spectral Index between 330 MHz and 74 MHz

Spectral index between 1.4 GHz and 330 MHz

Courtesy & Rudnick

SNR Cas A at 74 MHz

Low Frequency Observations of HII

- Discrete HII regions in absorption (n>50 cm ⁻³)
 - Cosmic Ray tomography
- HII region Envelopes (n~1-10 cm ⁻³)
 - Patchy ISM component
- Warm Ionized Medium (n~0.1 cm ⁻³)
 - Widely distributed ISM component
 - Radio can probe entire galaxy
 - Optical depths ideal for SIRA

Discrete HII regions in Absorption: Cosmic Ray Electron Tomography

- Use Galactic synchrotron emission to trace CR electron gas
- High v measure total column, confused with thermal & discrete sources
- Low v see only the synchrotron emission, HII regions provide path lengths, allow determination of 3D distribution

HII Regions in Absorption at Long Wavelengths

UTR-2 at 15 MHz: Sharpless 117 & 119, $\theta \sim 2$ degrees

Mapping out the Cosmic Ray Electron Gas: Use Galactic HII regions at known distances

Measure foreground, background, & total synchrotron emission along many lines of sight

Typical 30 MHz absorption "hole" flux for 1' HII region: 25 mJy outer Galaxy, 100 mJy inner Galaxy (at least 1000 Galactic HII regions of this scale)

LOFAR inner Galaxy, distant HII – SIRA – larger, anti-center nearby HII 5-13-03 SIRA Workshop 14

74 MHz GC: HII Region Absorption

Probing Lower Density ISM HII: Absorption of Nonthermal Sources

- Many SNRs show low frequency turnovers
 - Dulk & Slee (1975 ApJ, 199, 61), Kassim(1989, 347, 915)
 work
 - Patchy absorption constrains distribution of low density gas in ISM
 - WIM density ≤ 0.26 cm⁻³ (for T ~ 8000 K)
 - Consistent with absorption by Extended HII Region Envelopes
 - Inferred from 325 MHz RRLs (Anantharamaiah 1996, JApAstr, 7, 131)
 - T~3000-8000K, n~0.5-10 cm⁻³, Sizes~50-200 pc
 - Alternative interpretation: GRRLs may originate in old, evolved HII regions, not enough absorption seen at 34 MHz Dwarakanath thesis)
- This work in primitive state, the CLRO & Culgoora work was severely limited in frequency, angular resolution, & sensitivity (confusion)

Patchy Absorption Towards Galactic SNRs and the Distribution of Ionized Gas in the ISM

LOFAR inner galaxy, SIRA outer galaxy

- Many, but not all, SNRs show low v continuum turnovers.
- Previous low v studies have been limited to integrated spectra by the poor angular resolution and sensitivity.
- e LOFAR will revolutionize these absorption studies and expand to utilize xgal background sources for scattering 17 studies.

Free-Free absorption from the ISM: W49B

First example of spatially resolved free-free ISM absorption

Radio Recombination line H134α observed at ~65 km/s (*Downes & Wilson 1974*)

Absorption by the WIM

- Major component of ISM
 - 20% of volume
 - Scale height 1 kpc
 - Energetically important
 - Requires 1/6 of ionizing flux from O star population
 - Puzzle: incompatable with scale height well above stars and HI
 - Key diagnostic: H-alpha
 - Ron Reynolds work with WHAM
 - H alpha limited to probing ~1 kpc from the sun
 - Radio can probe entire galaxy
 - Frequency range ideal for SIRA
 - Low SIRA frequencies: probe outer galaxy and halo WIM
 - High SIRA frequencies: probe inner galaxy WIM

Wisconsin H-Alpha Mapper Survey (Ron Reynold's group)

WIM Absorption Frequencies for $\tau \sim 1$

Outer galaxy: low SIRA frequencies Inner Galaxy: high SIRA frequencies

Summary

- SIRA should provide unique observations of Galactic nonthermal and thermal sources
 - SNRs good for SIRA non-thermal & big
 - Find new SNRs, Spectrum of known SNRs
 - Even integrated spectra important for testing Fermi acceleration theory -SIRA to provide powerful lever arm in frequency space
 - Cas-A like internal absorption
 - Discrete "classical" HII regions (n>50 cm⁻³)
 - Probes of 3D distribution of CR electron gas
 - Study acceleration, diffusion, propagation, origin of Galactic CRs
 - Extended HII region envelopes?? (n ~ 1-10 cm⁻³)
 - Map distribution through observations towards discrete nonthermal sources – compliment to LOFAR
 - WIM (n ~0.1 cm⁻³) SIRA brings unique capability to map distribution of this important ISM constituent across the galaxy
- with LOFAR: probe complimentary regions of ISM phase space